¢ OpenGamma

OpenGamma Documentation
Sensitivity computation

Marc Henrard
marc@opengamma. com

OpenGamma Documentation n. 23 Version 1.1 - June 2014

mailto:marc@opengamma.com

Abstract

In this documentation we describe the way sensitivities to curves and other parameters are com-
puted. In particular we describe rate deltas or Bucketed PVOL.

Contents

1

2

Introduction
Bucketed PVO01 and similar results

Curve calibration and Jacobian matrix computation
3.1 What to calibrate?
3.2 Calibration

Advantages of Algorithmic Differentiation

4.1 Stability
4.2 Computation time oL
4.3 Comparison with finite difference L.

Workout example

Implementation

= W

o O ot

©

11

1 Introduction

In this documentation we describe the way the computation of sensitivities to curves and other
parameters is performed in OpenGamma libraries. In particular we describe rate deltas (also known
as Bucketed PV01) to market quotes .

As a one line summary, we can say that Algorithmic Differentiation (AD) is used systematically
throughout the OpenGamma’s implementation for fast and precise sensitivity computation. The
implementation is also done in a flexible way which allows to obtain results that cannot be obtained
by a simple “bump and recompute” approach.

The AD implementation can be viewed as an internal cuisine on the way to write the code and
irrelevant to the user. This is partly true: the final user wants to see (correct) numbers, how the
code that produces them is written is mainly irrelevant. It becomes relevant if the structure of the
code has a significant computation time impact or if it gives the user a larger set of results. As this
is the case for the implementation we describe, we will spend some space in this documentation
describing the impact of the internal organisation on users.

The description of the internal workings of the implementation for developers (not for end
users) is available in the documentation Quantitative Rescarch (2014).

2 Bucketed PVO01l and similar results

Interest rate deltas roughly describe the first order sensitivity of present values (or other results)
to the interest rate curves. In OpenGamma’s OG-Analytics, three levels of those sensitivities are
available:

Point This is the sensitivity with respect to the zero-coupon continuously compounded rates at
each point (each date) for which a discount factor is used and the sensitivity with respect to
the forward Ibor rate at each point a forward Ibor rate is used. The information is available
for each point, each cash flow, but is of a rather theoretical nature.

One case where the point sensitivity can be important in practice is for analysis of the fixing
sensitivity. The sensitivity to each fixing (usually important for the one in the coming days)
can potentially be displayed to users.

Internal parameters This is the sensitivity with respect to the internal parameters used to
represent the curve. Often the curves are represented by zero-coupon rates at given nodes
and interpolated between the nodes. In that case, the sensitivity provided in this case is the
sensitivity to the node zero-coupon rates. If the curve is represented by a parametrised curve
(like a Nelson-Siegel curve), the sensitivities obtained by this mechanism can be relatively
difficult to interpret.

Market quotes In this result, the sensitivity with respect to the market quotes used in the curve
calibration is computed. This is the most commonly used result in practice. It allows us to
obtain the first order hedge using the instrument used for the curve calibration.

A variant of the market quote sensitivity is also available, it is called the market rate sensitiv-
ity. In that case, the curve calibration is not done with respect to the standard market quote
of the instruments but with respect to a rate (or yield) like number. This will impact STIR

OFirst version: 5 June 2014; this version: 1.1 - 20 June 2014.

futures where the price is replaced by the future rate and bonds where the quoted (clean)
price is replaced by the conventional yield.

The results above are obtained with a usual AD approach; the different partial derivatives are
computed and then composed (multiplied). The point sensitivity is the first one computed. For
each cash flow the sensitivity to the zero-coupon rate corresponding to a discount factor and to
the different forward rates are recorded. Each discount factor and each forward is used but the
way the numbers are computed (interpolated curve or other) is irrelevant at this stage.

In the next step, the point sensitivities are “projected” to the curve parameters. The meaning of
projection obviously depends on the internal representation of the curve and its internal parameters.
The projection takes into account the exact nature of the curve description and in particular of the
interpolation mechanism if relevant; it is not a generic cash flow mapping but a specific mechanism
dependent of the curve’s internal representation. This representation can be useful in practice if
all curves have a similar representation (like zero-coupon rate interpolated curves); but in general
as the parameters can be of very different nature it would be incoherent to compare those figures.
For the particular case where the curves are represented by zero-coupon rates the total sensitivity,
called PV0O1, is provided.

In the third step, the internal sensitivities to the parameters are multiplied by the relevant
Jacobian matrices to obtain the market quote sensitivities. The Jacobian matrices are computed
together with the curve in the calibration process. The market quote sensitivities are thus obtained
with a very low computation cost.

The AD approach is also used for the curve calibration and Jacobian matrix computation
itself. The curve is calibrated on some quantity (market quote or market rate). The quantity
computation and its AD version are implemented in the library. The root finding process solved
to calibrate the curves is solved numerically using a recursive algorithm of Newton type. At each
step, the Jacobian matrix of the curve parameters to market quote transformation is computed
(and inverted). As described below in the Computation Time section, the computation of the
Jacobian matrix is also used internally in the root-finding algorithm of the calibration. Computing
those internal Jacobians with AD saves some computation time. In total, calibrating the curve
and computing the final Jacobian with AD is faster than only calibrating the curves without AD.

That transition matrix is computed using AD on the parameter to market quote function. In
the simplest case, the transition matrix (once inverted) is also the Jacobian matrix. When the
calibration process is done in several units (i.e. when curves are calibrated consecutively and not
simultaneously), the sensitivity to the previous curve’s market quotes also needs to be recorded.
The theoretical framework behind keeping track of the different sensitivities (using implicit function

> .

theorem) is described in the document Henrard (2013) and repeated in (Henrard, 2014, Section
8.3).

Note that the two methods (AD and bump and recompute) can be used in conjunction and
are not mutually exclusive. For example the AD Jacobian matrix can be computed for the curve
calibration process and then combined with bump and recompute for specific instruments. If AD
has not been implemented for a specific instrument, one can compute the internal parameter’s
sensitivity using bump and recompute (at the parameter level) and multiply those sensitivities
by the Jacobian matrix. The AD approach is flexible enough to accept any type of derivative
computation (adjoint AD, forward AD, finite difference) for each partial derivative computation.

3 Curve calibration and Jacobian matrix computation

This section highlight how the curve are calibrated and how the Jacobian or transition matrix are
computed.

3.1 What to calibrate?

The general goal of the curve calibration is to ensure that the market instruments used in the
calibration are “at market level” when priced by the calibrated curves. The “market level” can be
seen from several points of view. The standard ways to measure market level are present value,
par rate or par market quote. By quote we mean any number that is used in the market to indicate
the level of a financial instrument: rate, price, yield, clean price, etc.

The calibration constraint used in the present value approach is that all instruments have a
present value zero when valued with the calibrated curves. This is a general approach working in
all cases. It has nevertheless a couple of practical drawbacks. The first one is that the hedgers like
to see the risk figures, one of the important byproduct of the curve calibration process, in term
of sensitivity to a given change of market quote, like one basis point. If the curves are calibrated
using present value, one has to compute the market quote sensitivities as an extra information.
Even if one uses the present value approach internally, a par rate or equivalent approach would
be required from a risk perspective. The second drawback is numerical. The curve calibration
process, as described here, is done through a root-finding algorithm. The root-finding algorithm
is implemented with an iterative algorithm using the derivative of the target function to the
inputs, i.e. the sensitivities of the present values to the market quotes. The ratio in maturity
between the shortest and longest instrument can be from 1 to 15,000 (one day to 50 years). The
sensitivity matrix, which is inverted in the root-finding process, has values covering several orders
of magnitude. Its inversion is numerically less stable. For those two reasons, in practice, we prefer
to implement the curve calibration using the par market quote, or a variant of it, described below.

The calibration constraint used in the par rate approach is that the quotes for the instruments
as computed from the curves are equal to the actual market quotes. For most instruments, this
is not a problem. Nevertheless for some instruments this request is not trivial. Consider a basis
swap for which the first period has already been fixed. The market quote is a spread on one leg.
The market quote could be computed as the opposite of the sum of the two legs without spread
divided by the present value of a basis point of the spread leg. But as the first coupon has already
fixed, it is a fixed coupon, not a Ibor coupon with a spread. Implementing in a generic way the
“without the spread” concept is relatively complex.

For those reasons we found it is easier to work with figures we called par market quote spreads,
this is the number that should be added to the market quote to obtain a present value of zero.
The idea of present value equal to zero is similar to the one in the first approach but achieved in a
different way, through a number that has the dimension of a rate. For the basis spread mentioned
above, the par market quote spread is the opposite of the sum of the two legs (including the spread)
divided by the present value of a basis point of the spread leg. Whatever the coupons on each
leg are — fixed, Ibor or overnight — this quantity can be computed unambiguously. We found this
measure easier to work with than the par market quote and numerically more efficient in the solver
than the present value. Moreover the sensitivity to the market quote spread is the same as the
sensitivity to the market quote. So the matrix used internally by the root-finding scheme is the
same than the matrix we want to provide to the user to compute risk figures.

3.2 Calibration

Now that we have clarified the “what to calibrate”, we can move to the “how to calibrate”. We
deal only with exact calibration. We suppose that we have a certain number of instruments in
the calibration basket and the same number of parameters in the curves. The parameters are
split among the different curves. We suppose also that the multi-dimensional root finding problem
defined by the constraints on each instrument and the curve parameter has one non-singular
solution.

We index the instruments used in the calibration by k (1 < k <n). Let p = (p1)1<i<n denote
the parameters of the curves and S = (S;)1<r<n the par market quote spread functions for the
k-th instrument. The problem to solve is

Sk(p) =0 (1<k<n). (1)

In general, the problem is non-linear and strongly coupled. The solution has to be obtained globally
for all p as one computation block.

In some special cases, the problem can be divided in sub-problems, easier to solve numerically.
The most extreme simplification is when the problem can be divided into one dimensional sub-
problems. This is the case of the bootstrapping approach, where the interpolation scheme is local
and the curves are not entangled. This is non-realistic case and we do not analyse it further.

A more frequent numerical simplification is when some curves are not fully entangled and
the problem can be solved inductively; first calibrating some curves and then using the resulting
curves as an input to calibrating the next curves. In the sequel we call curve units the set of curves
calibrated simultaneously in one unique root-finding process. The complete set of all the related
curves is called a block.

The standard application of this is when the curves are build one by one. More involved
examples are when units of curves are first calibrated and then another unit of several curves is
calibrated based on the previous units. Let u be the number of units and n; the total number of
parameters in the first ¢ units. The steps in the induction are:

Sk((pr)o<i<n,) 0 (0<k<mn)
Sk((P)o<i<nys P)ni<i<n,) = 0 (n1 <k <ng)
Se((P)o<i<ng 15 P)nu_1<i<n) = 0 (ny—1 <k<n)

Each set of equations represents a unit.

Solving the above system of equations is not the only output of the calibration exercise. The
output of the procedure should facilitate the computation of the risks measures and provide hedging
tools. We now are more explicit by what we mean by that.

The calibrated curve is used to compute the present value of instruments (PV). We are in-
terested also by the sensitivities of the present value to the market quotes g used in the curve
building procedure:

oPV
Oqr
This is often called the bucketed PV01, bucketed deltas or partial PV01 of the instrument.

Using the calibrated curve, it is possible to compute the derivatives of the present value to

the curves parameters p. Algorithmic differentiation generally helps for that. The derivative with

respect to the market quotes can be obtained through

OPV -~ 0PV Op,
qx _z:Z1 Opr Oqr

What is missing to compute the above result in practice is the matrix

Opy
Ak / 1<i<n,1<k<n

The figures we suggest to use for calibration are the par market quote spreads. They are the
additive spreads to the market quotes, this is for ¢™ the market quotes and ¢ the computed quotes
from the curves, S(p,q¢™) = G(p) — ¢™. We rewrite Equation (1) to indicate explicitly the market
quote dependency. The calibrated parameters py are such that

S(po, ™) = 0.

Provided that some regularity conditions are satisfied around the solution (pg, ¢*), one can apply
the implicit function theorem. There is a function p : R™ — R™; ¢ — p(q) defined in a neighbour-
hood of ¢™ such that

S(p(q),q) = 0.

Using the implicit function theorem, the derivatives with respect to the quotes g can be obtained
by
Dyp = —(Dps)iquS = (DpS)il

The last equality is obtained using the fact that the derivative of S to the quote ¢ is —1.

When the root-finding problem is solved with a Newton-like algorithm, the same type of matrix
is computed. The Jacobian matrix is used to find the direction of the next best guess. Computing
the matrix for later use does not require developments beyond those already done for solving
efficiently the root-finding algorithm.

We call the Jacobian or transition matrix the matrix D,S and the inverse Jacobian the matrix
Dyp = (DpS)fl. Once the curve calibration process is finished, we store the inverse Jacobian
matrix, at least the non-zero blocks of it, for later use.

4 Advantages of Algorithmic Differentiation

The two main advantages of algorithmic differentiation for the implementation of bucketed PV01
and similar risk measures are stability and speed. (Henrard, 2014, Appendix C.3) details some
applications of algorithmic differentiation to the case of the multi-curve framework.

4.1 Stability

By definition the limit of the differentiation ratio is equal to the derivative in theory. This is the
base of the “bump and recompute approach”. In practice, in a finite precision arithmetic, this is
not true. When decreasing the bump size, the machine precision is reached and the results diverge.
This stems from the fact that the limit is of the style “0/0”. For standard implementations, the
level at which the divergence starts is around 1.0E-10. This is the best case, when the process to
compute f does not require heavy numerical procedures. The user is squeezed between taking a

small bump to obtain the theoretical convergence and a larger one in order to avoid the numerical
instability problem.

An example of instability for a small increment is proposed in Figure 1. This particular example
is a swap present value in the multi-curve framework. Any pricing will present a similar picture.
The error decreases when the bump size is decreased, up to a certain point where the numerical
instability kicks in and the number becomes meaningless. The level where the numerical instability
kicks in will depend on the algorithm used in the computation and is almost impossible to guess
in practice.

100 |
FD delta —6—
AD delta ——
50 - |
O]
g 0 (f ®_ o R RRARARAARRRARRRRRRARRRRRRRRRES N
w W
50 -
)}
- 1 I) ‘ | | |
100 —

|
4 10710 108 10°® 10°

Shift (in bps)

10 10

Figure 1: Instability of finite difference computation of derivative for a swap. The horizontal axis
represents the bump size in logarithmic scale. The vertical axis is the error. The true value is
represented by the horizontal dotted line.

A similar picture for a swaption in the Hull-White model is proposed in Figure 2.

4.2 Computation time

The first example of computation efficiency relates to an indirect application of algorithmic dif-
ferentiation. In the curve calibration, we use a multi-dimensional root-finding algorithm. The
implementation uses the derivative of the function to iterate the point in the root-finding algo-
rithm. The derivative can be computed through finite difference or explicitly by algorithmic differ-
entiation. We compare the finite difference performance to the adjoint algorithmic differentiation

500

kB delia o=

400 |- 4

300 =

0 RKQJ&A ocoo

(VASSESS <) S

-100 =

-200 3

"Bhift (in bps) "*

-7

|
10" 10 10

Figure 2: Instability of finite difference computation of derivative for a swaption in Hull-White
model. The horizontal axis represents the bump size in logarithmic scale. The vertical axis is the
error. The true value is represented by the horizontal line.

performance.

The example refers to the building of three curves in EUR (discounting, forward three months
and forward six months). We use OIS, fixed versus three months IRS and fixed versus six months
IRS. The choice of instruments is done in such a way that the curves are not entangled and can
be built one by one; no simultaneous building is required. With that choice, we can analyse two
items: the interest of having a flexible implementation allowing for simultaneous or successive curve
building and the impact of algorithmic differentiation. Note that the algorithmic differentiation
impact is indirect as the derivative of the objective function is only a small part of the computation.

The example uses three curves with 20 instruments each. The results are presented in Table 1.
When three units are used the ratio between the version without algorithmic differentiation and the
version with algorithmic differentiation is 2.05; when the three curves are built simultaneously, the
ratio is 3.28. Note that the difference of performance comes for the Jacobian matrix computation
only; the root-finding algorithm is the same in both case. The difference is that in one case (AD),
the Jacobian is explicit while in the other case (FD), the Jacobian is computed by bump and
recompute. In the most complex problems, the algorithmic differentiation, even if used indirectly,
has a real impact.

The interest of the possibility to split the problem into several units is assessed in the last

Number of units

Algorithmic differentiation 1 3 Ratio
No 109.1 41.5 2.63

Yes 33.3 20.2 1.65

Ratio 3.28 2.05 5.40

Time in milliseconds.

Table 1: Time to build curves with and without algorithmic differentiation.

column. The ratio between one unit and three is 1.65 with algorithmic differentiation and 2.63
without. The computation of the derivative being very efficient and only slightly impacted by
the number of inputs, the difference is not huge but far from trivial. In the absence of efficient
derivative computation, the ratio is significantly larger (2.63). Finally the last ratio is between
the number with one unit and no algorithmic differentiation and with three units and algorithmic
differentiation. The combination of those two numerical improvements reduces the computation
time more than fivefold.

The computation time impact of AD can be seen directly through the computation time of
different sensitivities. In Table 2, different computation times are provided. The example is a
swap in a simple two-curve environment (one discounting and one forward). There are a total of
30 nodes (15 on each curve). The present value of 10,000 swaps is computed in 225 milliseconds
(ms). For comparison, the construction of the swaps (in particular their dates) took 1,000 ms.
Computing the point sensitivity (see Section 2 for the definition) takes 950 ms in AD and is
impossible in bump and recompute. Computing the sensitivity to internal parameters takes 1.325
s in AD and 6.975 s (for asymmetrical difference, the double for symmetrical difference). The gain
is roughly a factor 5. The gain is more important for more complex situations where more curves
are involved, in particular for multi-currency curve calibration process.

Approach Construction Present Value PV + Point PV + Internal par.
AD 1,000 225 950 1,325
Bump & recompute 1,000 225 NA 31 x 225 = 6,975

Time in milliseconds; time for 10,000 swaps.

Table 2: Time to present value and to compute sensitivities of swaps (2 curves with 15 points
each).

4.3 Comparison with finite difference

In this section we give a few examples of comparison between the AD and bump and recompute
approach in terms of computed numbers. To perform the comparison we use OpenGamma’s
scenario generation tool. We generate scenarios which correspond simply to shift each market data
consecutively by one basis point. For each market data, we compute three present values: the
reference one, the one with the market rate moved up by one basis point and the one with the
market rate moved down by one basis point.

The scenario used for the one-sided bump and recompute is summarised in Listing 1.

Listing 1: Groovy script for point bump and recompute.

~
view {

name 'Swap.Desk.USD.1./._pv./_ois-irs'
server 'devsvr-1x-6:8080"
marketData {
snapshot 'Quant_USD_ON-OIS_LIBOR3M-FRAIRS_Unstructured.2014-03-17"
}
}
shockGrid {
ticker = [
'base._scenario’',
'USO003M._Index"',
'"USFROCF _Curncy ',

'USS010._Curncy ']
shock = [1.bp]
}
scenarios {
valuationTime '2014-03-17.11:50"
marketData {
id 'BLOOMBERG TICKER', ticker
apply {
shift Absolute, shock
}
}

J

This type of scenario implementation of the bump and recompute guarantees that there is a
total code independence between the AD version and the bump and recompute version used in
this test.

We have created a portfolio of STIR futures, Fed Fund futures, FRA, OIS and Libor IRS, each
with 100 millions notional. The maximum difference between the AD numbers and the bump and
recompute numbers is displayed in Table 3. We use the symmetrical and one-sided difference. The
numbers in the table are the maximum of the absolute difference for all nodes (total of 30 nodes
on two curves). The numbers include all the numerical instability: calibration procedure, pricing,
finite precision of doubles, etc. As can be seen from the table, using a one basis point shift and
symmetrical difference (bump up and bump down), the error is of the order of magnitude of a
hundred of a cent for one basis point bump. In practice the difference will be invisible in term of
actual numbers displayed.

We display also the details for a 10 year IRS (not ATM and aged by a couple of month, fixed
versus USD LIBOR 3M) in Table 4. Other examples, including with large portfolios, can be
produce using the above script.

5 Workout example

In this section we create a very simple example of swap pricing using a unique curve with few
points to show the way the results are obtained in algorithmic differentiation.

Approach STIR futures Fed Fund fut. FRA OIS 1RS

Asymmetrical 0.01 0.01 0.05 1.08 0.74

Symmetrical <1074 <1074 <1074 1074 1074
Difference in USD. Finite difference bump of 1 basis point.

Table 3: Difference between algorithmic differentiation and finite difference bump and recompute
for different instrument types.

USD Discounting USD Libor 3M
Tenor AD FD FD-AD Tenor AD FD FD-AD
ON -0.87 -0.87 0.00 Fixing 3M 1,526.72 1,526.74 0.02
TN -0.87 -0.87 0.00 FRA 6M 0.01 0.04 0.03
OIS 1M -5.24 -5.24 0.00 FRA 9M -0.03 0.02 0.05
OIS 2M -17.41 -17.41 0.00 IRS 1Y -58.54 -58.26 0.29
OIS 3M 1.69 1.69 0.00 IRS 2Y 137.30 137.49 0.19
OIS 6M 26.72 26.72 0.00 IRS 3Y -67.36 -66.94 0.42
OIS 9M -52.11 -52.11 0.00 IRS 4Y 11.09 11.83 0.74
OIS 1Y 4.40 4.40 0.00 IRS 5Y -80.75 -80.12 0.64
OIS 2Y -44.08 -44.09 0.00 IRS7Y -9,895.54 -9,895.13 0.42
OIS 3Y -75.47 -75.48 -0.01 IRS 10Y -78,371.53 -78,371.37 0.16
OIS 4Y -103.48 -103.50 -0.02 IRS 12Y 0.00 0.00 0.00
OIS 5Y -130.65 -130.68 -0.03 IRS 15Y 0.00 0.00 0.00
OIS 6Y -165.20 -165.24 -0.04 IRS 20Y 0.00 0.00 0.00
OIS 7Y -100.63 -100.68 -0.05 IRS 25Y 0.00 0.00 0.00
OIS 8Y -7.91 -7.93 -0.02 IRS 30Y 0.00 0.00 0.00
OIS 9Y -75.54 -75.59 -0.05
OIS 10Y -477.23 -477.36 -0.13

Difference in USD. Asymmetrical finite difference bump of 1 basis point.

Table 4: Difference between algorithmic differentiation and finite difference bump and recompute
for 10Y IRS.

The results are described in a spreadsheet, called OpenGamma-QuantDoc-23-ad-workout.xlsx,
and the corresponding code is available in the OG-Analytics library in the unit test workoutADEx-
ample in the class SwapCalculatorTest.

The sheet is divided in three parts: curve description, swap description and results comparison.

The curve is a simplified single curve with only four nodes and rounded zero-coupon rates.
The rates are interpolated linearly. Cell I1 contains the shift used for the bump and recompute
computations.

The swap is a USD forward starting swap starting in 6 month and with a tenor of 1 year with
standard USD conventions; there are 2 semi-annual fixed coupons and 4 quarterly Libor coupons.
The description of the swap has the fixing and payment times and the accrual factors.

For the fixed leg comparison, the bump and recompute numbers are available in rows 24 and
25. the present value is computed in column D. The next four columns (E-H) include the present
value for each of the nodes bumped by one basis point. The columns I-L are the delta using the

10

bumped present values. The AD results are available in rows 29 and 30. The point sensitivity
is provided in column A, and the projection on the node sensitivities in the columns I to L. The
comparison between AD and finite difference (FD) is in row 32. For a 100 million notional and a
1 basis point shift, the total difference is around USD 0.01.

The Libor leg comparison is a little bit longer as we have to compute the forward rate and then
discount the forward rate to today. There is a total of three discount factors involved for each
cash flow. The finite difference computation are done in lines 36 to 46 with the delta provided in
line 46, columns I to L. The AD computations are also more involved as each node is potentially
impacted by three rates for each cash flow. The AD results are available in lines 49 to 52. The
comparison between AD and FD is in line 54. For a 100 million notional and a 1 basis point shift,
the total difference is around USD 0.45.

6 Implementation
The detailed implementation of the different objects in the OG-analytics library is available in the
specific technical documentation Quantitative Research (2014).

References

Henrard, M. (2013). Multi-curve Framework with Collateral. Quantitative Research 13,
OpenGamma. Available at docs.opengamma.com. 2

Henrard, M. (2014). Interest Rate Modelling in the Multi-curve Framework. Applied Quantitative
Finance. Palgrave Macmillan. ISBN: 978-1-137-37465-3. 2, 5

Quantitative Research (2014). Multi-curves implementation: Providers, calculators and sensitivi-
ties. Technical Documentation 5, OpenGamma. Version 1.0. 1, 11

11

21.
22.
23.

OpenGamma Analytics Documentation

. The Analytic Framework for Implying Yield Curves from Market Data.

Multiple Curve Construction.

Option Pricing with Fourier Methods.

Bill Pricing.

Bond Pricing.

Interest Rate Futures and their Options: Some Pricing Approaches.
Bond Futures: Description and Pricing.

Forex Options Vanilla and Smile.

Forex Options Digital.

Swaption Pricing.

. Smile Extrapolation.

Inflation Instruments: Zero-Coupon Swaps and Bonds.
Hull-White one factor model.
Swap and Cap/Floors with Fixing in Arrears or Payment Delay.

Replication Pricing for Linear and TEC Format CMS.

. Binormal With Correlation by Strike Approach to CMS Spread Pricing.
. Libor Market Model with displaced diffusion: implementation.

. Portfolio hedging with reference securities.

. Compounded Swaps in Multi-Curves Framework.

. Curve Calibration in Practice: Requirements and Nice-to-Haves.

Bond's total return swap.
Equity's total return swap.

Sensitivity computation.

http://docs.opengamma.com/display/DOC/Analytics?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Analytic-Framework-for-Implying-Yield-Curves-from-Market-Data-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Multiple-Curve-Construction-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Option-Pricing-with-Fourier-Methods-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Bill-Pricing-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Bond-Pricing-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Interest-Rate-Futures-and-Options-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Bond-Futures-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Vanilla-Forex-Options-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Digital-Forex-Options-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Swaption-Pricing-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Smile-Extrapolation-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Inflation-Instruments-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Hull-White-One-Factor-Model-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/In-Arrears-and-Payment-Delay-Swaps-and-Caps-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/Replication-Pricing-for-Linear-and-TEC-Format-CMS-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/quantitative-research/CMS-Spread-Pricing-OpenGamma.pdf?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper

About OpenGamma

OpenGamma helps financial services firms unify their calculation of analytics across the traditional trad-
ing and risk management boundaries.

The company's flagship product, the OpenGamma Platform, is a transparent system for front-office and
risk calculations for financial services firms. It combines data management, a declarative calculation en-
gine,and analytics in one comprehensive solution. OpenGamma also develops a modern, independently-
written quantitative finance library that can be used either as part of the Platform, or separately in its
own right.

Released under the open source Apache License 2.0, the OpenGamma Platform covers a range of asset
classes and provides a comprehensive set of analytic measures and numerical techniques.

Find out more about OpenGamma Download the OpenGamma Platform
WWW.opengamma. com developers.opengamma.com/downloads
Europe North America
OpenGamma OpenGamma
185 Park Street 125 Park Avenue
London SE19BL 25th Floor, Suite 2525
United Kingdom New York, NY 10017

United States of America

¢ OpenGamma

http://www.opengamma.com/?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://www.opengamma.com/?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/downloads?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper
http://developers.opengamma.com/downloads?utm_source=opengamma-whitepaper&utm_medium=whitepaper&utm_campaign=quant-paper

	Introduction
	Bucketed PV01 and similar results
	Curve calibration and Jacobian matrix computation
	What to calibrate?
	Calibration

	Advantages of Algorithmic Differentiation
	Stability
	Computation time
	Comparison with finite difference

	Workout example
	Implementation

