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Abstract

This paper is neither a primer on vanilla interest rate derivatives or numerical opti-
misation. It is, as its name suggests, an introduction to caplet stripping, i.e. inferring
caplet/floorlet prices from the market prices of interest rate caps and floors. This of course
required some numerical optimisation.

We present several techniques (of different levels of sophistication) to achieve our goal.
These fall roughly into two camps: producing caplet volatilities such that the market
(cap/floor) prices are recovered exactly (or to some high tolerance), with little regard for
whether there is any arbitrage between caplets at different strikes; producing arbitrage free
caplet volatility surfaces, which do not fully recover the market prices.
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1 Introduction
This paper is concerned purely with the discussing of caplet stripping - that is, the inferring of
the values of caplets and floorlets (call and put options respectively on a Libor rate) from the
market quoted values of interest rate caps and floors. It is not a primer on these instruments
as such, and only discusses their mechanics insofar as it is required to understand the stripping
algorithms.1

Section 2 discusses the pricing of caplets/floorlets and caps/floors. Section 3 discusses cali-
bration in an abstract sense, while sections 4 and 5 give concrete examples of caplet stripping
algorithms with results.

For brevity we will often refer to caps and caplets only, with the understanding that this also
applies to floors and floorlets.

2 Pricing Caps and Caplets
In the following section we talk exclusively about caps and caplets; floors and floorlets are
completely analogous (i.e. caplets are call options on the underlying Libor rate while floorlets
are put options on the same rates), and do not require a separate treatment.

2.1 Pricing Caplets
We consider a Libor rate covering the period Ti to Ti+1. The Libor rate fixes at T f

i ,2 with a
value L(Ti, Ti+1) ≡ Li. The corresponding forward rate (for this Libor) at some time t ≤ T f

i is
given by F (t, Ti, Ti+1) ≡ Fi(t).

A caplet (floorlet) is essentially a call (put) option on a Libor rate; for the above Libor rate,
the payoff of a caplet/floorlet is given by

caplet/floorlet payoff = τi(χ[Li −K])+ (1)

where τi is the year fraction for the period3 and χ is +1 for caplets and −1 for floorlets.
The actual payment is at T p

i+1, which for a standard caplet is approximately equal to Ti+1.4
Since the Libor rate fixes at Ti, this is effectively the option expiry,5 and the value at this time
is

V caplet
floorlet

(Ti;K,Ti) = P (Ti, T
p
i+1)τi(χ[Li −K])+ (2)

where P (Ti, T
p
i+1) is the discount factor from the payment time.6 The fair value at some time

t < Ti is given by

V caplet
floorlet

(t;K,Ti) = P (t, T p
i+1)τiE

Ti+1

t

[
(χ[Li −K])+

]
(3)

1For that consult a interest rate derivatives text book, e.g. [BM06, Reb02, AP10a]
2This is usually two days before Ti.
3This is determined as DCC(Ti, Ti+1), where DCC is the relevant Day Count Convention.
4A difference of a few days may arise from the treatment of none-business days, see [Res13] for details on

conventions.
5The option payment is deterministic from this point.
6While we do not wish to explicitly discuss multi-curves, it should be noted that the discount factor comes

from the discount curve, while the forward Libor rate will come from the (relevant) index or Libor projection
curve.
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where ETi+1

t [·] is the expectation (at time t) in the Ti+1 forward measure. In this measure we
have

Fi(t) = ETi+1

t [Li] (4)

and it is market standard to price caplets/floorlets with the Black formula[Bla76] and implied
volatilities, so their price is given by

V caplet
floorlet

(t;K,Ti) = P (t, T p
i+1)τiBlack(Fi(t),K, Ti − t, σ(K,Ti), χ) (5)

where σ(K,Ti) is the volatility for a particular strike and expiry, and Black’s formula is

Black(F,K, T, σ, χ) = χ (FΦ(χd1)−KΦ(χd2))

d1 =
ln

(
F
K

)
+ σ2T

2

σ
√
T

d2 = d1 − σ
√
T

(6)

There is no loss in generality in doing this;7 it simply says that the value of a caplet/floorlet is
expressed as a Black volatility - to obtain a price we simply use equation 5.

2.2 Pricing Caps
A cap (floor) is simply a set of spanning caplets (floorlets) with a common strike, so the value of
a cap (floor) is simply the sum of the values of the constituent caplets (floorlets). The fair value
of the cap covering the period Tα to Tβ (so payments are (nominally) at Tα+1, Tα+1, . . . , Tβ−1

and Tβ) is

V cap
floor

(t,K, Tα, Tβ) =

β−1∑
i=α

V caplet
floorlet

(t;K,Ti) =

β−1∑
i=α

P (t, T p
i+1)τiBlack(Fi(t),K, Ti, σ(K,Ti), χ) (7)

All that is required to price the cap are the volatilities of the constituent caplets.

2.3 Cap Volatility
The price of caps is market information. The cap (implied) volatility is then the single volatility
given to all the constituent caplets (recall they have a common strike), such that the cap price
is recovered by equation 7. That is, it is the single value, σ(K,Tα, Tβ), that solves the equation

V cap
floor

(t,K, Tα, Tβ) =

β−1∑
i=α

P (t, T p
i+1)τiBlack(Fi(t),K, Ti, σ(K,Tα, Tβ), χ) (8)

A one year cap will generally have a different volatility from a two year cap (even for the same
strike), so this gives different volatilities (and hence prices) to the same caplets depending on
whether they are being considered in the one or two year cap. Hence cap volatility should be
seen simply as an alternative quoting convention to price.

7We are now in a world where negative forward rates (and negative strikes) are appearing for some currencies,
in particular EUR. The Black model cannot handle this situation. Alternative strategies include applying an
arbitrary shift (100bps say, so the new lower limit is a rate of -1%), or switching to normal (rather than log-
normal) dynamics, i.e. Bachelier’s formula. This is outside the scope of this paper.
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2.4 Cap Strikes
Caps are usually quoted with absolute strike, so there will be 0.5%, 1%, 2% etc strikes. This
can be useful for caplet stripping as it guarantees a set of different length caps with a common
strike.

The other liquid strike is at-the-money (ATM); this the strike that equals the swap rate for
the period covered by the cap, that is

KATM
α,β =

∑β−1
i=α τiP (t, T p

i+1)Fi(t)∑β−1
i=α τiP (t, T p

i+1)
(9)

Of course, different length caps will have different values of the ATM strike. Caps can also be
quoted with relative strikes, e.g. ATM±100bps, ATM±200bps, etc.

3 General Calibration
In reality caplets are not traded instruments, so there are no market prices (or volatilities)
of individual caplets, and instead they must be inferred from cap prices (or equivalently cap
volatilities). Since there are many more caplets than caps, there is no unique solution, and we
wish to choose, in some sense, the best solution from the universe of solutions.

Before we get into specific models for caplet stripping, we present a brief overview of different
classes of calibration. In the context of caplet stripping, observables mean cap/floor prices or
alternatively (Black) volatilities.8

Given a set of n observables y (as a vector) and a model that has a set of m parameters, x,
which produces a set of model values, ymdl, according to

G : Rm → Rn x 7→ G(x) = ymdl,

then model calibration falls into three distinct cases:

• m < n: The number of model parameters is less than the number of observables. Here the
problem is under specified, and it is generally not possible to find a set of model parameters
such that ymdl = y. Instead, one solves for x in a least squares sense, i.e.

minimise (y −G(x))TW(y −G(x)) (10)

where W is a diagonal weighting matrix, which can be used to give more importance
to fitting some observables over others.9 This type of problem can be solved with the
Levenberg-Marquardt algorithm[Lev44] (see [PTVF07] for a discussion).

• m = n: The number of model parameters equals number of observables. In principle we
can perform a multidimensional root find to obtain

x = G−1(y)
8Generally different results will be obtained from fitting to prices vs fitting to volatilities; the exception is when

the market observables can be recovered exactly, then (up to numerical accuracy) the two are equivalent.
9If solving for price, it is common practise to use the (inverse) option vega as the weight - this is a reasonably

good proxy to fitting for volatility. Of course, the identity matrix can be used to give equal weighting.
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which gives model values than match the observed values exactly. This can be solved by
quasi-Newton methods such as Broyden’s method[Bro65] (again discussed here [PTVF07]).
In general there is no guarantee that such a solution exists, in which case least squares, as
above, can be used.

• m > n: The number of model parameters exceeds the number of observables. Here the
problem is over specified, and there is generally no unique solution. To impose a unique
solution, some other constraint is required. One possibility is to introduce some penalty
function, P (·), on the model parameters, and solve the constrained optimisation problem

minimise P (x) subject to y = G(x) (11)

that is, our unique solution has the lowest value of P (x) subject to the calibrated model
recovering the observed values. A proxy for the constrained optimisation problem, that
has a simple implementation, is

minimise (y −G(x))T W (y −G(x))) + λxT Px (12)

where P is some penalty matrix10 and λ controls the balance between having the model
exactly recover the observed values, and minimising the penalty. This type of problem can
be solved using a modification of the Levenberg-Marquardt algorithm.11

All these methods benefit greatly from having the Jacobian matrix,12 J(x), available analyt-
ically (as opposed to having to estimate it using finite difference).

In the following sections, we will present caplet stripping methods belonging to all three
classes of calibration we have identified above. These methods are all applied to the same cap
volatility data (shown in appendix A), to provide a consistent comparison.

4 Term Structure Stripping Methods
The first set of methods we will look at assume that caplet volatilities are functions of time-to-
expiry only, i.e. there is a volatility term structure, but no strike dependence. This is applicable
to absolute strike quotes, where a set of caps (of different lengths) exist with a common strike;
different strikes are treated as a separate problem, so we can build up the caplet volatilities
across strikes, by joining these separate solutions together. This approach will not work when
the market quotes relative strikes (e.g. ATM±100bps, ATM±200bps, etc); in this case, one must
use one of the global methods from the next section.

We assume that for each strike a caplet volatility curve, σK(T ), exists that is a function of
the caplet expiry only. Caplet volatilities for all the underlying caplets in a cap are taken from
this curve, and used in equation 7 to give the cap price (which may then be converted to a cap
volatility).

Of course, our aim is to infer this caplet volatility curve from the market values of caps. We
present several methods to do this below.

10xT Px is a quadratic approximation of P (x).
11This is implemented in OpenGamma as NonLinearLeastSquareWithPenalty.
12The Jacobian is given by Ji,j =

∂(ymdl)i
∂xj
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4.1 Bootstrapping
This is the most basic of all the caplet stripping algorithms. It is very quick and guaranteed to
work provided a solution exists.13 It works as follows:

• Put the caps in ascending order of maturity.

• Find the price difference series for the caps (the first entry is just the price of the shortest
cap.

• Partition the caplets so they are assigned to the relevant price difference (again the first
set of caplets correspond to the caplets in the shortest cap)

• For each caplet partition, assign a common volatility, and solve by 1-D root finding, for
the price difference.

There are other ways the same result could be achieved, but this way decouples the problem
and allows the root finding at different expiries to be done in parallel.14 This algorithm will only
fail if a particular price difference is less than the intrinsic value of the constitute caplets. A
modification to the partitioning would allow caps with different start times to be used, but we
do not consider that here.

The result of this procedure on our sample data is shown in figures 1 and 2. Viewed against
time for fixed strikes,15 and within the limitations of piecewise constant volatility, the result
seems plausible, in that there are no large jumps at the cap expiries. However viewed as a
volatility smile (i.e. volatility against strike at fixed expiries), the picture is less good, with the
6M smile in particular showing a great deal of oscillation.

This method, like the two below, makes 18 separate fits to the 18 absolute strikes. There is
no constrain on smoothness across these separate fits, so it is hardly surprising that the smiles
that emerge can be far from smooth and potentially admit arbitrage.

4.2 Interpolated Curve
If the volatility curve is represented as a 1-D interpolated curve with the same number of knots as
there are cap prices, then in principle this can be solved to give a curve that will exactly reprice
all the caps. The choice of knot positions and interpolator will have a large effect on the quality
of the resulting curve - it is very easy to produce a wildly oscillating curve that nevertheless
perfectly reprices all the caps.

If a local interpolator (i.e. piecewise constant or linear) is used, and the knots are placed
at the expiries of the caps, then the system can be solved left-to-right (i.e. bootstrapped) by
a series of 1-D root findings.16 In general we must solve for all the knot values together using
a multi-dimensional root finder [PTVF07]. In the example below, we use a double-quadratic

13For a solution to exist the cap price differences must not be less than the sum of the intrinsic value of the
caplets; if this is the case, there is an arbitrage.

14Normal bootstrapping is a series of 1-D root finding problems, that must be solved in order.
15We have shown 3 strikes out of the 18 that are fitted.
16Of course for a piecewise constant interpolator, the result will be identical to the direct bootstrapping discussed

in the previous section.
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Figure 1: The result of the bootstrap procedure for strikes of 0.5%, 1% and 5%. The slope
(rather than a jump) is an artefact of how we have plotted the data.
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Figure 2: The result of the bootstrap procedure (i.e. volatility smiles) for maturities of 6M, 2Y
and 10Y.
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interpolator17 (and a linear extrapolator) with knots at the co-start of the caps, and all but the
last cap expiry.18

Figure 3 shows the resultant caplet volatility surface19 from joining together the 18 separate
calibrations to the absolute strikes. These caplet volatilities do indeed produce cap prices that
exactly match the market, however one would expect the surface to be ‘smoother’. This can
be seen more clearly by taking slices through it: Figure 4 shows slices in the time direction (at
strikes of 0.5%, 1% and 5%), which are smooth term structures of volatilities; however slices in
the strike direction (smiles shown in figure 5) look completely implausible. The explanation is
the same - there is no coupling between the solutions across strikes to impose any smoothness in
that direction.

4.2.1 Using different numbers of knots

Fewer knots than caps could be used, with the system solved in a least-squares sense. However,
since this will not recover the market values exactly while conferring no obvious advantages,
there seems little point in exploring this further.

We could also use more knots than market cap values, with an additional penalty on the
smoothness of the resultant curve. This is discussed below in the context of representing the
curve by B-splines[dB78].
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Figure 3: The caplet volatility surface from a series of independent calibrations to separate strikes
using interpolated volatility term structures.

17Two quadratic fits are made: one involving the previous two knots and the next; and the other involving the
previous knot and the next two. A linear weighting, based on position between the two adjacent knots, is then
taken between the two curves. The result is a semi-local third-order polynomial interpolation.

18We found this gave a more stable curve.
19A linear 2-D interpolator has been used to fill in between the caplet volatilities.
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Figure 4: The result of the interpolation procedure for strikes of 0.5%, 1% and 5%.

4.3 Penalty methods
4.3.1 Direct Fitting

The problem with an interpolated term structure is that it requires a choice of knots and inter-
polator: a poor choice of either can give an oscillating volatility curve, that nevertheless reprices
all the caps. An alternative is to fit directly for all the underlying caplet volatilities (of a given
strike), so these volatilities are themselves the model parameters.

We order the unique set of underlying caplets by their expiries and let the vector of caplet
volatilities be σ. The vector of cap values (either prices or volatilities) we denote by v, then
equation 720 can be expressed in a compact vector notation as

G : Rm → Rn; σ 7→ G(σ) = v (13)

That is, G(·) is the mapping from the vector of m caplet volatilities to the vector of n cap values.
Since n > m, there is no unique solution, and we must impose some additional penalty.

Let P be some penalty matrix (which we detail below), such that the quantity

σT Pσ

is zero only if σ is perfectly smooth and increases the less smooth σ is. We now have a penalty
method,

minimise (v −G(σ))
T
(v −G(σ)) + λσT Pσ (14)

The penalty matrix, P is constructed as P = DTD where D is the kth order differentiation
matrix such that Dσ is the finite difference estimate of ∂kσ

∂tk
. Further details of the penalty

matrix are given in appendix B. We use k = 2 which penalises the curvature of the volatility
term structure.

20If we are using cap volatilities, then equation 8 is also required to imply the volatility from the price.
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Figure 5: The result of the interpolation procedure (i.e. volatility smiles) for maturities of 3M,
1Y and 9Y9M.

Figure 6 shows the resultant volatility surface for λ = 0.1 - this recovers all the cap volatilities
to less than 1bps. As in the interpolated term structure case, this ’surface’ comes from joining
the results from the 18 independent calibrations.

4.3.2 P-Splines

The volatility term structure can be expressed in terms of basis functions (B-splines) as [dB78]

σ(T ) =
N∑
i=1

wif(T − Ti) (15)

where the basis function, f(x), is an even function made from nth order polynomial pieces
spanning n+2 evenly spaced knots: a first order B-spline is made from two linear parts to form
a triangle; while a second order consists of three quadratic parts, which are zero at the two end
knots and match value and first derivative at the two internal knots [EM96].

If we partition the time between the first and last caplet expiry into M evenly spaced knots,
then we will have N = M + n − 1 basis functions, with the vector of weights, w controlling
the shape of the volatility curve. To have enough flexibility in the curve, we would have more
weights than there are caps (at a particular strike). Similar to the direct method, the system is
solved by applying a penalty to the smoothness of the weights.21

If the knots are placed at the caplet expiry, this method is effectively identical to the direct
method. With fewer knots (which makes the system smaller, thus quicker to calibrate), the
results are still very similar to the direct method, and we do not show them here.

21We generate the penalty matrix from the second order difference in the weights. Again see appendix B.
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Figure 6: The caplet volatility surface from a series of independent calibrations to separate strikes
using direct caplet volatility fits with penalty.

5 Global Stripping Methods
To impose smoothness on the smiles and to incorporate ATM and relative (strike) market quotes,
we need some sort of global caplet volatility fitter.

If the caplet volatility surface, σ(K,T ), or simply the discrete set of caplet volatilities are
described by a set of parameters θ, then there is a mapping from these parameters to the cap
values which result from pricing the underlying caplets, which may be expressed generically in
our usual form as

v = G(θ)

Below we discuss some models of this form.

5.1 Smile Model Based Strippers
In this section we discuss using smile models with expiry dependent parameters to form a caplet
volatility surface. This approach is advocated in [AP10b].

A smile model is any model that produces a volatility smile - SABR[HKLW02], Heston[Hes93]
and SVI[Gat06] are all examples. We do not concern ourselves here with the assumed dynamics
of the forward rate that lead to the (implied) volatility smiles.22 We simply treat them as a
mapping from a set of parameters to a (hopefully arbitrage free) volatility smile.

22SABR and Heston are stochastic volatility models and SVI (stochastic volatility inspired) is simply a formula
that gives plausible smiles.
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The (Black) volatility produced by a model can be expressed as

σ(K) = s(K;T, F ;ϕ) (16)

This notation indicates that the smile (a function of strike, K) in general depends on state
variables (the forward rate, F , and the expiry, T ) and model parameters, ϕ. For the case of
SABR, there are four model parameters, which are usual given the symbols, α, β, ρ and ν.

By making the model parameters expiry dependent, we may extend the smile to a volatility
surface (function of strike and expiry), i.e.

σ(K,T ) = s(K,T ;F (T );ϕ(T )) (17)

Again for SABR, there would be four parameter term structures α(T ), β(T ), ρ(T ) and ν(T ).23

The problem is then to find the parameters term structure, ϕ, that gives a (caplet) volatility
surface that will minimise the error between the model and market cap values in a least square
sense.

5.1.1 SABR with interpolated parameter term structures

We now give a concrete example using the SABR model. There is somewhat of a trade off
between β and ρ (they both affect the skew), so we choose to make β a single global parameter;
α and ν are represented by double-quadratic interpolated curves with knots at 1, 2, 3, 5, 7 and
10 years; ρ is also represented by double-quadratic interpolated curve with knots at 1, 3 and 7
years.

We calibrate to the cap volatilities using an error of 100bps. This results in a chi-square of
93.6 (or 0.86 per cap), so the RMS difference between model and market volatility is 86bps - this
is shown graphically in figure 7.

It is a feature of this approach that the market values are not fully recovered; SABR (with
a fixed β) has three parameters, so cannot in general recover option prices at more than three
strikes. We have 18 absolute strikes, plus the ATM, so even allowing for an arbitrarily complex
term structure, full recovery is not possible.24 The calibrated parameter term structures are
shown in figure 8. While these are relatively smooth, we had to experiment with the choice
of knot positions to obtain this. In particular, ρ has a small number of knots to suppress
oscillations which occur with more knots. This manual turning is not practical, and we would
prefer a methodology that automatically guaranteed smoothness of the term structure.

The smooth term structures of parameters does in turn lead to a smooth (caplet) volatility
surface. This is shown in figure 9. Whether the relatively poor recovery of market values is
acceptable depends on what exactly the inferred caplet volatilities will be used for. One advantage
of this approach (other than producing smooth volatility surfaces) is that smile model parameters
exist for every expiry (in the range from the first to last caplet expiry), so extrapolation to higher
or lower strikes using the model is trivial.

5.1.2 Smile Based Stripper using P-Splines

The need to fine tune the knots to avoid (smile model) parameter oscillations is a major drawback
to representing the parameters as interpolated curves. An alternative representation of the

23This is not the same as some extensions of SABR which make the parameters appearing in the stochastic
differential equation (SDE) time dependent.�Our approach essentially has separate dynamics for every forward
Libor rate.

24This is also true for Heston and SVI which have five parameters.
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Figure 7: The market vs model cap prices (expressed as volatilities) at three strikes (absolute
strikes of 0.5% and 5%, and ATM) for a SABR based caplet stripper.
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curves is to use P-splines (as in section 4.3.2) with a (separate) penalty on the curvature of each
parameter curve. While this can produce plausible parameter term structures, it is the stiffness
of the smile model (in the strike direction) that prevents a close fit to the market - this is true
regardless of how the parameter term structures are represented.

5.2 Penalty Function based Strippers
5.2.1 Direct Fitting

An alternative global method is based on a nonparametric approach in which constituent caplet
volatilities are fitted directly such that market cap values (prices or volatilities) are recovered
and smoothness across the caplet volatilities is achieved. In other words, the caplet volatilities
are our model parameters. Let σ be the vector of caplet volatilities ordered firstly by strike then
by expiry (so caplets with the same strikes will appear next to each other), then we wish to solve

minimise (v −G(σ))
T
(v −G(σ)) + σTPσ (18)

which is just equation 14, except now we have all the caplet volatilities, not just those at a par-
ticular strike. The form of the penalty matrix is also more complex; it must impose smoothness
in both the expiry and strike directions.

We first consider the case without the ATM caps. Since the longest dated cap (10 years) has
quotes for all 18 absolute strikes, the caplets lie on a 18 by 39 grid in strike-expiry space with no
gaps. If we let PK and PT be the penalty matrices that act in the strike and expiry direction
respectively25 (see appendix B), then the full penalty matrix that acts on the vector σ is given
by

P = λKInT
⊗ PK + λTPT ⊗ InK

(19)
where InT and InK are respectively size 39 and size 18 identity matrices, and λK and λT respec-
tively the strength of the smoothness penalty in the strike and expiry direction.

The fit is made directly to the cap volatilities with an error of 1bps and a common λ of 0.03.26

With this set up we achieve an RMS match to the market of just under 1bps. By reducing λ
further we can increase the accuracy of the fit, but 1bps should be well within the bid-offer, so
we consider this an acceptable recovery of the market. Figure 10 shows the resultant (caplet)
volatility surface. This should be compared with the equivalent figure for the SABR model (fig.
9). Globally they have very similar shapes; the difference is that the direct fit is less smooth in
the strike direction, and this is the difference between fitting the market cap volatilities to 1bps
vs 100bps.

We excluded the ATM quotes so that the remaining caplets lay on a grid with no gaps - this
allowed the penalty matrix to be expressed as a Kronecker product between (a suitably sized)
identity matrix and a 1-D penalty matrix. Including the 7 ATM quotes produces gaps in the
grid. We could craft a penalty matrix that handles this; however, in this case, a simpler approach
is to introduce phantom caplets to fill in the gaps. These have no effect on the model cap values
(since they do not actually form part of any caps), and since we are penalising curvature, they
will end up with values that are linearly interpolated from the actual caplet volatilities.

There is some inconstancy in our market data between the ATM quotes and the absolute
strike quotes (see appendix A). For this reason we fit to the ATM quotes with an error of 1bps
and the rest with an error of 10bps, and use λT = 0.01 and λK = 0.0002. This achieves a

25They are 18 by 18 and 39 by 39 respectively.
26If we changed the error and scaled λ by the square of this, we will obtain the same result.
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Figure 10: A smooth caplet volatility surface resulting from a direct fit to the caplet volatility
with a penalty on the curvature in both the strike and expiry directions. Here the ATM cap
quotes have been excluded.

chi-squared per cap of 1.2. Figure 11 shows the resultant caplet volatility surface. Since we
have reduced λK by two orders of magnitude, the surface is inevitably less smooth in the strike
direction.

Without the ATM caps we have 702 caplets, thus 702 variables to solve for. With the inclusion
of the ATM quotes, we have 823 caplets, but using phantom caplets this jumps to 975 (25×39).
These are all relatively large systems, which makes calibration slow.

If caps are quoted with relative strikes, the situation is worse. For 1, 2, 3, 4, 5, 7, and 10
years caps with, say, 9 relative strikes, we have 1089 unique caplets (assuming 3M caplets with
the first period not paid). If we used the method above of adding phantom caplets, we would
have a total of 2457. At this point it may be better to look for an alternative approach.

5.2.2 P-Splines again

A surface can be represented using B-Splines; the 2-D basis functions are just the Kronecker
product of their 1-D counterparts. The volatility at some point on the surface is given by

σ(K,T ) =

NK∑
i=1

NT∑
j=1

wi,jfi,j(K,T ) (20)

where Nk and NT are the number of basis functions in the strike and expiry directions. If the
weights matrix is flattened row-wise then we can generate a penalty matrix (on the curvature of
the weights) as above. This gives us the problem where the weights are the model parameters,
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Figure 11: A smooth caplet volatility surface resulting from a direct fit to the caplet volatility
with a penalty on the curvature in both the strike and expiry directions. This includes the ATM
quotes.

i.e.
minimise (v −G(w))

T
(v −G(w)) + wT Pw (21)

The advantage of this method, over directly fitting the caplet volatilities, is firstly there is no
restriction on the strike type (absolute or relative), and secondly we can make do with a much
smaller system.

We find that second order basis functions with 10 internal knots in the time direction, and
third order basis functions with 25 internal knots in the strike direction27 gives sufficient flexibility
to fit the market data. Using λk = 100 and λT = 1000, we obtain an RMS fit of 0.4bps when the
ATM caps are excluded, which degrades to around 10bps when they are included. The resultant
caplet volatility surface is very similar to that obtained with the direct method (i.e. figure 10) -
we do not show it for brevity.

6 Conclusion
We have demonstrated several methods of inferring caplet/floorlet volatilities from the market
prices of interest rate caps/floors - so called caplet stripping. Some of these methods will recover
exactly (or to some high tolerance) the market prices, but provide no guarantee that the resultant
caplet smiles are free from arbitrage; other methods, based on smile models, will guarantee

27This gives a total of 434 2D basis functions.
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arbitrage free caplet smiles,28 but will not recover the market prices.
It may be possible to build a lack of arbitrage as a constraint into the penalty methods - i.e.

find the smoothest arbitrage free (caplet) volatility surface that recovers the market prices. Of
course, the market data may be such that this surface does not exist; then there is (again) a
choice between exactly fitting the market and having some arbitrage. This, however, is outside
the scope of this paper.

A Market data
In the tables below we show the market data used in the examples in this paper. It is from early
2013, and is provided to allow easy reproduction of the results given here. The same data can
be found in the OpenGamma test code.29

The original data requires some cleaning before it can be used. To highlight problems, in
figure 12 we plot the one and ten year cap/floor ‘smiles’, using all the available volatility data.
We see that, especially for the one year data, there are points that are clearly outliers which
should be removed.

The cap volatility data (table 1) has been manually cleaned to remove outliers (these are
usually stale prices), and is a representative volatility grid suitable for testing the different caplet
stripping methodologies discussed in the main paper. We have left the ATM points in our data
set, even though they are often inconstant with close-by absolute strike quotes. This inconstancy
does affect the fits made in the main paper.

This paper is not concerned with calibration of the funding (or discount) and (relevant) index
curves. Details of the approach used by OpenGamma can be found here [Whi12, Hen12]. For
reference we provide the knots of the interpolated curves30 in table 2 and show these curves in
figure 13.

B Difference, Derivative and Penalty Matrices
B.1 Difference Matrix
We define the nth order difference matrix acting on a vector of length m, as a m × m matrix
with the first n rows set to zero. The zeroth order matrix is trivially the identity matrix, and
the first and second order difference matrices are

D1 =


0 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
... . . . ...

0 · · · 0 −1 1

 D2 =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

...
...

... . . . ...
0 · · · 0 1 −2 1


(22)

with obvious extensions to higher differences.
28A caveat is required here: this is only true if the smile model is arbitrage free; our example used Hagan’s

SABR formula which is not in fact arbitrage free.
29com.opengamma.analytics.financial.interestrate.capletstripping
30We have used a double-quadratic interpolator in both cases.
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Figure 12: Data on USD cap/floor volatility.
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Cap Length (Years)
1 2 3 4 5 7 10

C
ap

St
rik

es

0.5% 71.75% 77.81% 83.66% 81.01% 76.33% 71.40%
1.0% 75.23% 70.56% 66.10% 59.33% 53.13%
1.5% 78.09% 73.99% 66.70% 61.47% 53.50% 46.91%
2.0% 63.46% 56.98% 48.24% 43.69%
2.5% 80.50% 73.41% 60.81% 54.72% 46.45% 38.85%
3.0% 61.06% 52.87% 43.20% 36.50%
3.5% 96.98% 82.27% 73.76% 51.68% 41.83% 35.49%
4.0% 98.93% 83.76% 72.74% 59.83% 51.69% 40.83% 33.75%
4.5% 100.63% 83.62% 60.03% 34.50%
5.0% 102.13% 83.91% 72.26% 59.21% 49.84% 39.14% 32.16%
5.5% 102.55% 84.06% 71.96% 59.62% 50.35% 38.73% 32.27%
6.0% 104.76% 84.11% 70.72% 58.85% 50.06% 38.56% 31.35%
7.0% 104.67% 70.66% 58.55% 50.17% 38.24% 30.93%
8.0% 70.50% 58.46% 49.90% 38.02% 31.60%
9.0% 84.58% 70.35% 58.34% 49.84% 38.91% 31.64%
10.0% 84.89% 70.21% 58.25% 49.99% 39.16% 32.39%
11.0% 70.09% 58.24% 50.59% 40.05% 32.55%
12.0% 69.97% 58.18% 50.59% 40.14% 32.71%
ATM 69.03% 75.30% 82.84% 79.07% 70.74% 53.70% 45.42%

Table 1: Volatility grid for USD caps. Outliers have been manually removed from the table.
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Figure 13: The USD discount (funding) and index (3m Libor) curves used in this paper.
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Time Zero Rate
0.003 0.213%
0.088 0.144%
0.173 0.145%
0.255 0.135%
0.345 0.134%
0.425 0.133%
0.507 0.128%
0.759 0.132%
1.005 0.139%
2.005 0.173%
3.010 0.254%
4.005 0.410%
5.005 0.629%
10.005 1.700%

Time Zero Rate
0.044 0.184%
0.088 0.201%
0.173 0.241%
0.255 0.281%
0.507 0.295%
0.759 0.310%
1.005 0.320%
2.014 0.378%
3.010 0.483%
4.005 0.655%
5.005 0.878%
6.005 1.125%
7.018 1.363%
8.011 1.576%
9.008 1.768%
10.008 1.942%
15.007 2.540%
20.008 2.825%
25.011 2.986%
30.014 3.112%

Table 2: The knot values for the interpolated discount curve (left) and index curve (right).

The associated penalty matrix is given by

Pn = Dn
T Dn

B.2 Derivative Matrix
For a (non-uniform) set of points x = (x1, x2, . . . , xi, . . . , xm)T and a function evaluated at those
points (i.e. yi = f(xi)), the nth order derivative matrix, Dn, is such that Dny is the finite
difference estimate of the nth order derivative of the function at the points, i..e.

(Dny)i ≈
dny

dxn

∣∣∣∣
x=xi

The three-point estimate (suitable for n = 1 & 2) can be found here [Whi13].
We then define the penalty matrix as

Pn =
1

(xm − x1)2n
Dn

TDn

where the first term is present to make the penalty matrix scale invariant.
To impose some level of smoothness, often one wished to have a penalty of the form

λ

∫ b

a

(
dny

dxn

)2

dx
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The quantity xT Pnx is an approximation of this (up to a scaling factor) only if the points x are
uniformly spaced. However as the sum of squares of the nth order derivatives, it is sufficient as
a smoothness criteria.
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About OpenGamma

OpenGamma helps financial services firms unify their calculation of analytics across the traditional
trading and risk management boundaries.

The company's flagship product, the OpenGamma Platform, is a transparent system for front-office
and risk calculations for financial services firms. It combines data management, a declarative calcu-
lation engine, and analytics in one comprehensive solution. OpenGamma also develops a modern,
independently-written quantitative finance library that can be used either as part of the Platform, or
separately in its own right.

Released under the open source Apache License 2.0, the OpenGamma Platform covers a range of asset
classes and provides a comprehensive set of analytic measures and numerical techniques.

Find out more about OpenGamma
www.opengamma.com

Download the OpenGamma Platform
developers.opengamma.com/downloads
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